Measuring, Modeling, and Shaping Skill Development

Andrew Caplin: HCEO Conference on Measuring and Assessing Skills

Chicago, October 2 2015

- Will pose five basic (abstract) questions
- Question 1: How well does standard multiple choice test with standard grading measure skill?
 - ► 1A: How is standard test answered?
 - ▶ 1B: What therefore can be inferred from scores?
- Question 2: Data engineer's question: how might enriched measurement and grading improve skill measurement?
 - ► 2A: Elicit information about confidence in answer and use in grading algorithm
 - ► 2B: Elicit information about (or restrict) allocation of time and use in grading algorithm
- Question 3: How would changes in measurement and scoring impact learning?

- ▶ Brief answers to Q1-Q3:
- ► Question 1: How well does standard multiple choice test with standard grading measure skill?
- ▶ Use simple e.g.s to illustrate reasons to worry
 - ► In simplest reasonable model, mapping from beliefs about answers to answer depends on scoring rule and utility function
 - In simplest reasonable model, optimal allocation of time problem essentially insoluble
 - ► In richer model, role for psychological variables (e.g. anxiety)

- ► Question 2: How might enriched measurement and grading improve skill measurement?
- Use simple e.g.s to illustrate reasons for optimism
 - In simplest reasonable model allowing elimination and eliciting beliefs revealing
 - In simplest reasonable model much learned from allocation of time revealing
 - ► Measuring both even richer
 - ► Improves adaptive testing in vertical learning environments

- Question 3: How would changes in measurement and scoring impact learning?
 - In given exam, test taker (TT) with fixed actual skill (cognitive capacity) must map from prior learning to distribution of possible scores and corresponding utilities
 - Extremely complex since scores based on posterior beliefs which depend on time allocation
 - ▶ Best possible posterior depends on grading scheme and external value
 - TT has beliefs about distribution of possible tests
 - ► This allows computation of EU of any given level of skill

- ► Balance utility of capacity against costs
 - ▶ TT has utility costs (time, effort, and angst) of skill development
 - Based on some view of the personal production function for cog. capacity chooses optimal level of such development!
 - Not at all easy to specify
 - ► Hints from theory of rational inattention (Sims [1998, 2003], Woodford [2012], Matejka and McKay [2015], Caplin and Dean [2015]).

- Question 4: What research methods would liberate further understanding?
 - ▶ I propose a class of laboratory experiments before field tests
 - Simple idea is to fix skill by fiat and explore how well measured in different protocols.
 - Can enforce different time divisions to get sense of feasible set of posteriors
 - ► Can add ex ante purchase to get to the investment phase
- ▶ Note no attempt to introduce theory of optimal design at this point
 - ► A bridge too far

- ▶ 1A: How is standard test answered?
- ► First part is how does examinee knowledge at point of completion impact answers?
- ▶ **Standard MC test** *M* has three parameters:
 - T time (minutes) available to answer all questions
 - ▶ N no. of distinct questions drawn from $q(n) \in Q$ background question set:
 - $K \ge 2$ real answer options per question

► Action set for each question is *Y*:

$$Y = \{1, , , K, \emptyset\};$$

with \emptyset denoting no answer.

- Actual answer (in words) associated with option k for question n is a(k, n) from universal answer set A
- ▶ Unique correct action for each question $y^*(n) \in \{1, , , K\}$
- ► Typically uniform probability independent across questions in the design that each is correct.

- ▶ A standard answer is an element of $\bar{y} = (y(n))_{n=1}^N \in Y^N$.
- A standard scoring rule is a piece-wise linear function σ : Y^N → [0, N] depending only on the number of correct and incorrect answers

$$C(\bar{y}) = \sum_{n=1}^{N} 1_{\{y(n)=y^{*}(n)\}};$$

$$I(\bar{y}) = N - C(\bar{y}) - \sum_{n=1}^{N} 1_{\{y(n)=\emptyset\}};$$

$$\sigma(\bar{y}) = \max\{C(\bar{y}) - \rho I(\bar{y}), 0\};$$

with $\rho \geq 0$ the error penalty.

- ▶ Test given to individuals $i \in I$; with $\bar{y}^i \in Y^N$ the answer of i and $\sigma(\bar{y}^i)$ the corresponding score.
- ▶ What examiner learns about $i \in I$ depends on what determines these answers
- ► Here we enter realm of theory

 Simplest reasonable model a Bayesian maximizing expected utility of the final score,

$$U:[0,N]\longrightarrow \mathbb{R}.$$

- ▶ To formalize define posterior beliefs at point of choosing all answers that $\bar{y} \in [Y/\emptyset]^N$ is correct vector of answers: must sum to 1.
- ► Correlations can be induced by common aspects of answer algorithm.
- Optimal answer problem non-trivial
- ► This treats it as all answered at once at end: equivalent if can go back and change in light of noted correlations
 - ► Else even more complex
 - Standard batch vs. sequential issue in search theory

- ► Simplest is independent case (sequential and batch answer strategies the same)
- ▶ Define $\gamma^i(k, n)$ as i's posterior at point of answer that $1 \le k \le K$ is correct answer to question $1 \le n \le N$.
- ▶ In independent case, if answer, surely pick some most likely element $\hat{k}(n)$ (for simplicity unique)

$$y^{i}(n) \in \arg\max_{1 \le k \le K} \gamma^{i}(k, n) \cup \emptyset.$$

- ▶ When best to not answer?
- ► Simple(st?) theory would be a threshold rule based on posterior beliefs over the correct answers to each question.
- Simplest satisficing rule is to set penalty dependent threshold probability $\bar{\gamma}(\rho)$ and answer

$$\max_{1 \leq k \leq K} \gamma^i(k, n) \geq \bar{\gamma}(\rho) \Longrightarrow y^i(n) \in \arg\max_{1 \leq k \leq K} \gamma^i(k, n);$$

$$\max_{1 \leq k \leq K} \gamma^i(k, n) < \bar{\gamma}(\rho) \Longrightarrow y^i(n) = \emptyset.$$

▶ Defines complete mapping from posteriors to possible answers.

- ► Relies on linear EU over score
 - ▶ Inconsistent with floor of 0
- ▶ A risk averter may get all "most likely correct" to probability $p > \frac{1}{K}$ correct but find it better to not answer some if this lowers the probability of catastrophic outcome
 - \blacktriangleright e.g. three questions penalty $\rho>0$ and need to get at least 2 to avoid catastrophe
 - ▶ If answer 2 get 2 probability p^2 : answering all 3 dominated since need to get all three right to avoid catastrophe, probability p^3 .
- ▶ In independent case general optimal strategy based on posterior is to look at EU if answer first *m* most likely and then do not answer rest.
- ▶ Call this V(m) and then maximize over m.

- ► With correlated answers get choice between plunging and diversification
- ► Two answer algorithms each 0.5 correct determine answer to 2 questions
 - Get 2 questions, no (small) error penalty and concave EU: alternate answers
 - ▶ If need both correct for EU reasons then instead plunge
- Qualitatively: may need to change prior answer to optimize given evolving information about correlations

- ▶ Above gives no role to time allocation and time constraint
 - ▶ Drift-diffusion model (Ratclifff[1978]) shows that more time generally raises probability correct.
- Hence score depends on time allocation strategy
 - ► Easy first beats linear order: different form of intelligence to know
 - ► Caplin and Martin [2015] experiment shows bi-modal time to decide:
 - Quick decision guess or not:
 - ▶ If guess look like only trivial information taken in
 - ▶ If not, deliberate and to better

- ► What best stopping time for identifying hard question and what to do with that?
- Depends on what happens next: essentially impossible dynamic programming problem!
- Psychological characteristics also enter:
 - How early problem impacts later performance may depend on neuroticism

Q1B: Score and Skill

- ▶ What then to infer from scores?
- ▶ If RE and beliefs correct on average (p=0.9 is 90% correct) then if all answered with same confidence, score a good estimator as number of questions increases
- Can define more skilled type as one who is more certain about the answers to all questions
- ▶ Induces a mapping, albeit stochastic, from skill to score distribution
- ▶ Underlies simple theory that higher score likely reflects higher skill.

Q1B: Score and Skill

- ▶ But in richer and more realistic theory conflates many factors:
 - With non-linear EU may answer more if less confident and produce higher expected score.
 - ▶ Different utility functions possible so score reflects preferences and skill:
 - Character differences e.g. anxiety
 - ▶ Illusory beliefs e.g. overconfidence (p = 0.9 is 60% correct)
- Might find an individual who dominates another in sense of clarity per unit time yet scores lower
 - Different order of answers
 - ► Different cutoff strategy (too much time on a hard question)

Q2A: Posteriors and Elimination

- ► Simple schemes can recover more details of posterior
 - ▶ If allow at least occasionally multiple options and/or elimination
- ▶ In principle may measure actual posteriors of most likely
 - ▶ BDM scheme for replacing 1 based on belief draw: use question if draw lower than stated belief and else use stated belief and urn!
 - ► Enables test of RE: may reveal possibly dangerous illusion of certainty!
 - ► Interesting question of whether or not to allow no score: maybe want this but also most likely if forced again with BDM
 - ► To get out information on correlations in beliefs requires conditional probabilities!
- ► Measuring beliefs may allow separation of "Eureka" from continuous accretion questions

Q2B: Time

- ▶ With time allocation can do better skill identification
- ► Can use an interface that enforces order and removes differences in the strategy.
 - ► Makes it a more direct reflection of task skill
- ▶ If want to know about skill in selection algorithm, design a separate test!

Q2B: Adaptive Testing

- Exam design very different vertical in difficulty vs. horizontal (all equally difficult)
- ► Superior measurement improves adaptive testing in vertical cases.
 - Not just errors but remaining time
 - Provides possibility for interactive hints as time extends

- ► First fix exam protocol and grading scheme
- ► Fixed actual skill (cognitive capacity: think Shannon capacity as example) determined by pre-exam effort (see below)
- ► Also an EU function over scores based on value in future options/career
- ▶ In given multiple choice test $M \in \mathcal{M}$, reasonable that test taker (TT) has unifom prior over correct answers
- Utility function induces mapping from vector of posteriors to answers to scores

- Designing an information system in the sense of Blackwell
 - Essentially a mapping from the uniform prior to a distribution over possible posteriors.
 - ► Can formulate as a classical optimization problem in language of RI
- ► The true answers are hard to assess: the goal of the TT is to choose a clarifying information structure using fixed skill
 - ▶ Depending on time allocation will end up with different profile of posteriors and hence optimal answers and scores
 - ► TT might identify optimal exploration and answer strategy in non-anticipatory manner
- RI appropriate to focus on internal cognitive constraints on information processing rather than external costs of information access.

- ► The learner's job ex ante is to invest in earning a valuable score subject to the individual costs of building this skill
- ► From an ex ante view the actual learning during pre-exam period motivated not by given exam but by beliefs over the exam
- From ex ante viewpoint must judge how skill level impacts score on all possible tests
 - Think of investment in capacity in relation to the larger space of all possible questions and their answers.
 - Requires beliefs about possible exams as set by the teacher (will not look for consistency now!)
 - ► This allows computation of EU of any given level of skill

- ▶ It is envisaged that capacity is subjectively costly to produce.
- ► In basic RI theory, the DM faced with maximizes expected utility net of (separable) capacity costs.
 - ► Different RI models involve differentially specifying the notion of capacity and the cost function for building it
 - ► Of particular importance is the Shannon cost function which specifies costs as linear Shannon capacity
- ► To a first approximation, goal of exam is to encourage the building of the capacity
 - Examiner's optimization a bridge too far

Q4: Experimental Elicitation of Skill

- Question 4: What research methods would liberate further understanding?
 - Fix skill: make questions involve various operations carried out by a machine.
 - ► Make one machine faster in all operations by a fixed proportion
 - ► Have them complete a large set of different types of test
 - ► See how well you can recover fixed skill
 - ► To induce emotions make difficult tasks hard to identify
 - ▶ Do a personality inventory etc. to see how other factors enter.